

A replacement of Orocos ros integration

This documentation is a mirror of the original documentation
in Orocos documentation [https://docs.orocos.org].

Contents:

	Overview ROS integration
	Map between Orocos and ROS concepts

	Components of the integration layer

	Hello world

Check

Check that the result is as expected.

Overview ROS integration

Orocos framework is well integrated with ROS, a popular software bundle with
the largest community among roboticists to design new applications. Most of
the concepts from both frameworks map well and are largely supported.

Map between Orocos and ROS concepts

There are some similarities on the function of concepts between the two framework.
However, their mapping is not exactly one to one.
The next table establishes the equivalence between the two frameworks.

	Concept

	Orocos feature

	ROS feature

	Data flow communication

	Data ports

	Topics

	Outbound data terminal

	OutputPort

	Publisher

	Inbound data terminal

	InputPort

	Subscriber

	Service

	Operation

	Service

	Action

	Action

	Action

	Data structure

	Typekit

	Message

	Data collection

	Property, Attribute, Constant

	Parameter

	Computation unit

	Orocos process, Component

	Node

Orocos ROS integration is a collection of packages that provides a translational
layer between the two frameworks to make easy for the user to transit data and
calls from one to the other framework.

Warning

The notion of ROS service and RTT service are conceptually different.
An RTT Service is a collection of Operations and Properties that provide
additional functionality and it can be loaded in a component.
The ROS service is best understood as an Operation in the Orocos framework.

Components of the integration layer

The main components provided by the integration layer are as follows.

	ros: ROS package import plugin as well as wrapper scripts and launch files
for using Orocos with ROS.

	rosclock: Realtime-Safe NTP clock measurement and ROS Time structure
construction as well as a simulation-clock-based periodic RTT activity.

	rosnode: Plugin for ROS node instantiation inside an Orocos program.

	rosparam: Plugin for synchronizing ROS parameters with Orocos component
properties.

	roscomm: ROS message typekit generation and Orocos plugin for publishing
and subscribing to ROS topics as well as calling and responding to ROS
services.

	rosdeployment: An RTT service which advertises common DeploymentComponent
operations as ROS services.

	rospack: Plugin for locating ROS resources.

	tf: RTT-Plugin which uses tf to allow RTT components to lookup and
publish transforms.

	actionlib: RTT-Enabled actionlib action server for providing actions
from ROS-integrated RTT components.

	dynamic_reconfigure: A service plugin that implements a
dynamic_reconfigure server to update properties dynamically during
runtime.

	ros_msgs: ROS .msg and .srv types for use with these plugins.

Hello world

This is an extra file of documentation.

Index

Orocos + ROS Integration: Sources

Orocos and ROS integration is distributed in two main repositories in
GitHub [https://github.com].

Orocos & ROS 1 Integration

The source code for the integration with ROS 1 can be found in:
GitHub: rtt_ros_integration [https://github.com/orocos/rtt_ros_integration].

Orocos & ROS 2 Integration

The source code for the integration with ROS 1 can be found in:
GitHub: rtt_ros2_integration [https://github.com/orocos/rtt_ros2_integration].

Installation tutorial

This tutorial explains how to get Orocos + ROS running for the first
time using Docker.

Docker is a system to run software in an isolated and reliable way.
We will be using Docker to make your own host system independent from
the Orocos + ROS version used.

Getting Docker

The first step will be get Docker installed if your host machine doesn’t
yet have it.
To do that, we are going to follow the instructions provided in
Docker.com: Install Docker Engine on Ubuntu [https://docs.docker.com/engine/install/ubuntu/].

Note

If you use other system, there is a more generic guide to install Docker
in Docker.com Install Docker Engine [https://docs.docker.com/engine/install/].
Please, refer to it.

The guide suggests to remove any other old version of Docker, which is not
strictly necessary.

You can check that your Docker installation is working successfully by
running:

$ sudo docker run hello-world

You should get an output similar to this:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (amd64)
3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

Pulling Orocos/ROS image

The second step, once we have Docker working properly is acquiring and running
a Docker image with Orocos and ROS integration. We will pick for this tutorial
the melodic distribution of ROS. Check other available versions in
DockerHub: orocos/ros [https://hub.docker.com/r/orocos/ros/tags].

Pull the Docker image by typing:

$ docker pull orocos/ros:melodic-ros-base-bionic

This step needs only to be done once. From then, that image will persist in
the host machine and a derived container can be created and run any number
of times.

After downloading all the layers, the new image is ready and a container
can be run with:

$ docker run -it orocos/ros:melodic-ros-base-bionic /bin/bash

From now on, we will use the terminal where the container is running.

Check the installation

Finally, we are going to verify the installation by doing a couple of
sanity checks.

Let’s check the version of Orocos and the version of ROS running in
the container.

$ deployer --version
 OROCOS Toolchain version '2.10.0' (GCC 7.5.0) -- GNU/Linux.

$ rosversion -d
melodic

The output of the command lines (preceded with $) should be the exact
version that the container is running.

Now we can check that the launch the Orocos deployer:

$ deployer
Real-time memory: 517888 bytes free of 524288 allocated.
Switched to : Deployer

This console reader allows you to browse and manipulate TaskContexts.
You can type in an operation, expression, create or change variables.
(type 'help' for instructions and 'ls' for context info)

 TAB completion and HISTORY is available ('bash' like)

 Use 'Ctrl-D' or type 'quit' to exit this program.

Deployer [S]>

This prompt Deployer [S]> is the main Orocos console where you can
input commands.

Finally let’s see that rtt_ros package can be loaded successfully. In
the Orocos command input try:

Deployer [S]> import("rtt_ros")
= true
Deployer [S]> ls ros
 Listing Service ros[S] :

Configuration Properties: (none)

Provided Interface:
 Attributes : (none)
 Operations : import

Data Flow Ports: (none)

Services:
(none)

With this, we have checked that the package rtt_ros was imported properly.
Now you can exit the console by typing quit or Ctrl-D as the Orocos
help message suggests.

Orocos/ROS topics tutorial

This tutorial will teach how to set up an Orocos component to communicate
with ROS through Orocos ports / ROS topics.

Note

If you don’t have a working version of Orocos + ROS installed in your system,
please refer to the first tutorial
Installation.

Let’s start from a new console

Installation tutorial

This tutorial explains how to get Orocos + ROS 2 running for the first
time using Docker.

Docker is a system to run software in an isolated and reliable way.
We will be using Docker to make your own host system independent from
the Orocos + ROS 2 version used.

Getting Docker

The first step will be get Docker installed if your host machine doesn’t
yet have it.
To do that, we are going to follow the instructions provided in
Docker.com: Install Docker Engine on Ubuntu [https://docs.docker.com/engine/install/ubuntu/].

Note

If you use other system, there is a more generic guide to install Docker
in Docker.com Install Docker Engine [https://docs.docker.com/engine/install/].
Please, refer to it.

The guide suggests to remove any other old version of Docker, which is not
strictly necessary.

You can check that your Docker installation is working successfully by
running:

$ sudo docker run hello-world

You should get an output similar to this:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (amd64)
3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

Pulling Orocos/ROS image

The second step, once we have Docker working properly is acquiring and running
a Docker image with Orocos and ROS integration. We will pick for this tutorial
the foxy distribution of ROS. Check other available versions in
DockerHub: orocos/ros2 [https://hub.docker.com/r/orocos/ros2/tags].

Pull the Docker image by typing:

$ docker pull orocos/ros2:foxy-ros-base-focal

This step needs only to be done once. From then, that image will persist in
the host machine and a derived container can be created and run any number
of times.

After downloading all the layers, the new image is ready and a container
can be run with:

$ docker run -it orocos/ros2:foxy-ros-base-focal /bin/bash

From now on, we will use the terminal where the container is running.

Check the installation

Finally, we are going to verify the installation by doing a couple of
sanity checks.

Let’s check the version of Orocos and the version of ROS running in
the container.

$ deployer --version
 OROCOS Toolchain version '2.10.0' (GCC 9.3.0) -- GNU/Linux.

$ rosversion -d
foxy

The output of the command lines (preceded with $) should be the exact
version that the container is running.

Now we can check that the launch the Orocos deployer:

$ deployer
Real-time memory: 517888 bytes free of 524288 allocated.
Switched to : Deployer

This console reader allows you to browse and manipulate TaskContexts.
You can type in an operation, expression, create or change variables.
(type 'help' for instructions and 'ls' for context info)

 TAB completion and HISTORY is available ('bash' like)

 Use 'Ctrl-D' or type 'quit' to exit this program.

Deployer [S]>

This prompt Deployer [S]> is the main Orocos console where you can
input commands.

Finally let’s see that rtt_ros2 package can be loaded successfully. In
the Orocos command input try:

Deployer [S]> import("rtt_ros2")
= true
Deployer [S]> ls ros
 Listing Service ros[S] :

Configuration Properties: (none)

Provided Interface:
 Attributes : (none)
 Operations : find import

Data Flow Ports: (none)

Services:
(none)

With this, we have checked that the package rtt_ros2 was imported properly.
Now you can exit the console by typing quit or Ctrl-D as the Orocos
help message suggests.

Tutorial: Orocos + ROS integration

Warning

This page is under construction and the content is expected to be soon
updated.

These tutorials will guide a new user in Orocos and ROS to get running
and application and understand how to connect the concepts explained
in the Orocos documentation with ROS concepts in a practical way.

ROS 1 integration

	Installation tutorial

	Orocos/ROS topics tutorial

	Orocos + ROS 1 integration tutorials

ROS 2 integration

	Installation tutorial

	Orocos + ROS 2 integration tutorials

External tutorials

Tutorials (external) [https://gitlab.com/dustingooding/orocos_examples]

Orocos + ROS 1 integration tutorials

Some tutorials.

Orocos + ROS 2 integration tutorials

Some tutorials.

External tutorials

Tutorials (external) [https://gitlab.com/dustingooding/orocos_examples]

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 A replacement of Orocos ros integration

 		
 Overview ROS integration

 		
 Map between Orocos and ROS concepts

 		
 Components of the integration layer

 		
 Hello world

_static/ajax-loader.gif

